题目内容
【题目】若x=2是方程k(x-3)=1的解,则k=____________.
【答案】-1
【解析】∵x=2是方程k(2-3)=1的解,∴ - k=1,解得k= -1,故答案为:1.
【题目】
问题探究:(1)已知:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE丄DH于点O,求证:AE=DH
类比探究:(2)已知:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,则线段EF与HG有什么数量关系,并说明理由;
拓展应用:(3)已知:如图3,在(2)问条件下,若HF∥GE,BE=EC=2,EO=2FO,求HG的长.
【题目】如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,
AF与BG交于点E.
(1)求证:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的长度.
【题目】一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为 16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
(3)求出哪种方案的运费最省?最省是多少元?
【题目】若∠C=,∠EAC+∠FBC=
(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则与有何关系?并说明理由.
(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与、的关系是 .(用、表示)
(3)如图③,若≥,∠EAC与∠FBC的平分线相交于, ;依此类推,则= (用、表示)
【题目】若4x2·□=8x3y,则“□”中应填入的代数式是________.
【题目】长城总长约为6 700 000米,用科学记数法表示正确的是( )
A. 6.7×108米 B. 6.7×107米 C. 6.7×106米 D. 6.7×105米
【题目】将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的解析式为( )
A. y=2x-5 B. y=2x+5 C. y=2x+8 D. y=2x-8
【题目】在平面直角坐标系中,点M(-3,-2)到x轴的距离是( )
A. 3
B. 2
C. -3
D. -2