题目内容
(1)根据题设条件,请你找出图中各对相似三角形;
(2)请选择其中的一对相似三角形加以证明.
分析:认真审题,选择适宜的相似三角形的判定方法进行判定.
解答:解:△DBE∽△DAB;△DBE∽△CAE;△ABD∽△AEC各(1分)共(3分)
选择△ABD∽△AEC.
∵DA是∠BAC的平分线,
∴∠BAD=∠CAE.(4分)
∵∠D=∠C,(6分)
∴△ABD∽△AEC.(8分)
选择△ABD∽△AEC.
∵DA是∠BAC的平分线,
∴∠BAD=∠CAE.(4分)
∵∠D=∠C,(6分)
∴△ABD∽△AEC.(8分)
点评:此题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
练习册系列答案
相关题目