题目内容
【题目】如图,点 E,F 是ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】D
【解析】分别添加条件①②③④,根据平行四边形的判定方法判定即可.
添加条件①,不能得到四边形DEBF是平行四边形,故①错误;
添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE ∥BF,∴DEBF是平行四边形,故②正确;
添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故③正确;
添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故④正确.
综上所述:可添加的条件是:②③④.
故选D.
练习册系列答案
相关题目