题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD、CD.
(1)求证:AD=CD;
(2)①画图:在AC边上找一点H,使得BH+EH最小(要求:写出作图过程并画出图形,不用说明作图依据);
②当BC=2时,求出BH+EH的最小值.
【答案】(1)证明见解析;(2)①画图见解析;②EH+HB的最小值=2.
【解析】
(1)证明△ABC≌△ABD(SAS),可得AC=AD.
(2)①作点B关于直线AC的对称点B′,连接EB′交AC于H,点H即为所求;②连接AB′,证明△ABB′是等边三角形即可解决问题.
(1)证明:∵∠ACB=90°,∠BAC=30°,
∴AB=2BC,∠ABC=60°
∵AE=EB,
∴BC=BE,
∵△BED是等边三角形,
∴BE=BD,∠ABD=60°,
∵AB=AB,∠ABC=∠ABD=60°,BC=BD,
∴△ABC≌△ABD(SAS),
∴AC=AD.
(2)①作点B关于直线AC的对称点B′,连接EB′交AC于H,点H即为所求.
②连接AB′,
∵AC⊥BB′,CB=CB′,
∴AB=AB′,
∵∠ABC=60°,
∴△ABB′是等边三角形,
∵AE=EB,
∴B′E⊥AB,
在Rt△BEB′中,∵BB′=4,∠EBB′=60°,
∴EB′=BB′sin60°=2,
∴EH+HB的最小值=EH+HB′=EB′=2
【题目】某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:
销售时段 | 销售型号 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 台 | 台 | 元 |
第二周 | 台 | 台 | 元 |
(1)求、两种型号的电风扇的销售单价;
(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?
(3)在(2)的条件下商城销售完这台电风能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.