题目内容
如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=,E为AC的中点,那么sin∠EDC的值为________.
分析:根据AD⊥BC于D,BD=9,cosB=求得AB=15,由勾股定理得AD=12、AC=13,再利用直角三角形的性质求得∠EDC=∠ECD,从而利用sin∠EDC=sin∠ECD求解.
解答:∵AD⊥BC于D,BD=9,cosB=,
∴AB=BD÷cosB=9×=15,
∴由勾股定理得AD=12,
∵DC=5,
∴AC=13,
∵E为AC的中点,
∴ED==EC
∴∠EDC=∠ECD
∴sin∠EDC=sin∠ECD==;
故答案为.
点评:本题考查了解直角三角形、直角三角形斜边上的中线及勾股定理的知识,考查的知识点比较多且碎.
练习册系列答案
相关题目