题目内容
【题目】如图,在长方形ABCD中,AB= 4,BC= 8,将长方形纸片ABCD折叠,使点C恰好与A点重合,则折痕EF的长是( )
A. B. C. D.
【答案】D
【解析】
设BE=x,则有CE=8-x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
解:设BE=x,则CE=BC-BE=8-x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=8-x,
在Rt△ABE中,AB2+BE2=AE2,
即42+x2=(8-x)2
解得x=3,
∴AE=8-3=5,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=5,
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=4,
AH=BE=3,
∴FH=AF-AH=5-3=2,
在Rt△EFH中,EF= .
故选:D.
练习册系列答案
相关题目