题目内容
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求进行解答即可.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?
(Ⅰ)设乙队如果单独施工x个月能完成总工程,根据题意,利用工作效率、工作时间、工作量之间的关系填写下表.(要求:填上适当的代数式,完成表格)
| 工作效率 | 工作时间 | 工作量 | |||||
| 甲 |
|
1 |
| ||||
| 乙 | x | 1 | |||||
| 甲、乙合作 |
|
分析:由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为
,设乙的工作效率为x,甲乙共同工作半个月完成剩下的( 1-
),(甲的工作效率+乙的工作效率)×
=1-
,由此可列方程.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
解答:解:设乙队如果单独施工x个月能完成总工程.
依题意列方程:(
+
)×
=1-
.
解方程得:x=1.
经检验:x=1是原分式方程的解.
答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.
依题意列方程:(
| 1 |
| 3 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 3 |
解方程得:x=1.
经检验:x=1是原分式方程的解.
答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.
| 工作效率 | 工作时间 | 工作量 | |||||||
| 甲 |
|
1 |
| ||||||
| 乙 |
|
x | 1 | ||||||
| 甲、乙合作 | (
|
|
1-
|
点评:本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系主要用到公式:工作量=工作效率×工作时间.
练习册系列答案
相关题目
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)
(Ⅱ)列出方程(组),并求出问题的解.
天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)
(Ⅱ)列出方程(组),并求出问题的解.
| 速度(千米/时) | 所用时间(时) | 所走的路程(千米) | |
| 骑自行车 | X | 10 | |
| 乘汽车 | 10 |
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答过程.如果你选用其它的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
两个小组同时开始攀登一座900米高的山,第一组的攀爬速度是第二组的1.2倍,第一组比第二组早15分钟到达顶峰.求两个小组的攀爬速度各是多少?
(Ⅰ)设第二组的攀爬速度为x米/分,利用速度、时间、路程之间的关系填写下表.
(要求:填上适当的代数式,完成表格)
(Ⅱ)列方程(组),并求出问题的解.
两个小组同时开始攀登一座900米高的山,第一组的攀爬速度是第二组的1.2倍,第一组比第二组早15分钟到达顶峰.求两个小组的攀爬速度各是多少?
(Ⅰ)设第二组的攀爬速度为x米/分,利用速度、时间、路程之间的关系填写下表.
(要求:填上适当的代数式,完成表格)
| 速度(米/分) | 所用时间(分) | 所攀登的路程(米) | |
| 第一组 | 900 | ||
| 第二组 | x | 900 |