题目内容
【题目】分解因式:a3b-9ab=.
【答案】ab(a+3)(a-3)【解析】解:原式=ab(a2-9)=ab(a+3)(a-3).所以答案是ab(a+3)(a-3).
【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】试题分析:(1)原式利用单项式乘以多项式法则计算即可得到结果;
(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;
(3)先根据幂的乘方的逆运算,把(-)2 016化为()1008,再根据积的乘方的逆运算计算即可.
试题解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【题型】解答题【结束】19
【题目】如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出△ABC关于直线BM对称的△A1B1C1;
(2)写出AA1的长度.
【题目】如图,一次函数y=-2x+2的图像与x轴、y轴分别交于A、B两点.
(1)求图像与坐标轴围成的图形的面积.
(2)过C(0,1)作CD⊥AB于点P,交x轴于点D,求直线CD的解析式.
(3)点M从点D出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t(秒),△APM的面积为S.
①求出S关于t的函数关系式;
②运动多少秒时,△APD被PM分成的两部分面积比为1:5;
③连接AC,Q为直线AB上一点,当OQ垂直平分线段AC时,OQ把△AOB分成的两部分面积比为多少.(请直接写出答案)
【题目】中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:
(1)本次抽样调查的样本容量是 ,表示“D级(不喜欢)”的扇形的圆心角为 °;
(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;
(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.
【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=6,DB=10,求BE的长.
【题目】若∠α=30°,则∠α的补角是( )A.30°B.60°C.120°D.150°
【题目】一个多边形的每一个内角为108°,则这个多边形是_____边形.
【题目】如图,反比例函数的图象经过点A(-2,5)和点B(-5,p),ABCD 的 顶点C、D分别在y轴的负半轴、x轴的正半轴上,二次函数的图象经过点A、C、D.
(1)点D的坐标为 ,
(2)若点E在对称轴右侧的二次函数图象上,且∠DCE>∠BDA,则点E的横坐标m的取值范围为
.
【题目】如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.
(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足 时,y1>y2.