题目内容

【题目】已知:如图,在ABCADE中,∠BACDAE90°ABACADAE,连接CDCDE三点在同一条直线上,连接BDBE.以下四个结论:①BDCE②∠ACEDBC45°BDCE④∠BAEDAC180°.其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】如图:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,

,

∴△ABD≌△ACE(SAS),
∴BD=CE,

∴①正确;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,

∴②正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,

∴③正确;

④∵∠BAC=∠DAE=90°,∠BAC+∠DAE+BAE+∠DAC=360°,

∴∠BAE+∠DAC=180°,正确.

所以①②③④都正确,共计4.

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网