题目内容

【题目】如图,AB是⊙O的直径,C的中点,CEAB于点E,BDCE于点F.

(1)求证:CF=BF;

(2)CD=5,AC=12,求⊙O的半径和CE的长.

【答案】(1)证明见解析;(2)CE=

【解析】

(1)AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)C的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.

(1)AB是⊙O的直径,

∴∠ACB=90°.

∴∠A+ABC=90°.

又∵CEAB,

∴∠CEB=90°.

∴∠BCE+ABC=90°.

∴∠BCE=A,

C的中点,

=

∴∠DBC=A,

∴∠DBC=BCE.

CF=BF;

(2)=,CD=5,

BC=CD=5,

AB==13,

∴⊙O的半径为6.5,

CEAB=ACBC,

CE===

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网