题目内容

阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于______.
请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于______.
【答案】分析:由等腰直角三角形的性质、旋转的性质知,△OEB与△BOC是等底同高的两个三角形;
①将△DBI和△FCH平移即可得到如图所示的△EGM.
②如图2,根据正方形的性质推知△ABE和△ACG都是等腰直角三角形,则根据旋转的性质推知S△AEG=S△AEM=S△AMG=S△ABC=1,所以易求△EGM的面积.
解答:解:∵△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°,
∴OD=OC,OA=OB.
又∵将△AOD绕点O顺时针旋转90°得△OBE,
∴∠DOE=90°,OD=OE,
∴点C、O、E三点共线,
∵OC=OE,
∴△OEB与△BOC是等底同高的两个三角形,
∴S△OEB=S△BOC=1,
∴S△BCE=S△OEB+S△BOC=2.

①(答案不唯一):如图1,
以EG、FH、ID的长度为三边长的一个三角形是△EGM.

②如图2,∵四边形AEDB和四边形ACFG都是正方形,
∴△ABE和△ACG都是等腰直角三角形,
∴S△AEG=S△AEM=S△AMG=S△ABC=1,
∴S△EGM=S△AEG+S△AEM+S△AMG=3,即以EG、FH、ID的长度为三边长的三角形的面积等于3.
故答案是:2,3.
点评:本题考查了全等三角形的判定与性质、三角形的面积、等腰三角形的性质以及正方形的性质.注意平移、旋转的性质的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网