ÌâÄ¿ÄÚÈÝ
Óó¤¶ÈÒ»¶¨µÄ²»Ðâ¸Ö²ÄÁÏÉè¼Æ³ÉÍâ¹ÛΪ¾ØÐεĿò¼Ü£¨Èçͼ¢Ù¢Ú¢ÛÖеÄÒ»ÖÖ£©ÉèÊúµµAB=xÃ×£¬Çë¸ù¾ÝÒÔÉÏͼ°¸»Ø´ðÏÂÁÐÎÊÌ⣺£¨ÌâÖеIJ»Ðâ¸Ö²ÄÁÏ×ܳ¤¶È¾ùÖ¸¸÷ͼÖÐËùÓкÚÏߵij¤¶ÈºÍ£¬ËùÓкᵵºÍÊúµµ·Ö±ðÓëAD¡¢ABƽÐУ©
£¨1£©ÔÚͼ¢ÙÖУ¬Èç¹û²»Ðâ¸Ö²ÄÁÏ×ܳ¤¶ÈΪ12Ã×£¬µ±xΪ¶àÉÙʱ£¬¾ØÐοò¼ÜABCDµÄÃæ»ýΪ3ƽ·½Ã×£¿
£¨2£©ÔÚͼ¢ÚÖУ¬Èç¹û²»ÓÕ¸Ö²ÄÁÏ×ܳ¤¶ÈΪ12Ã×£¬µ±xΪ¶àÉÙʱ£¬¾ØÐμÜABCDµÄÃæ»ýS×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿
£¨3£©ÔÚͼ¢ÛÖУ¬Èç¹û²»Ðâ¸Ö²ÄÁÏ×ܳ¤¶ÈΪaÃ×£¬¹²ÓÐnÌõÊúµµ£¬ÄÇôµ±xΪ¶àÉÙʱ£¬¾ØÐοò¼ÜABCDµÄÃæ»ýS×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿
·ÖÎö£º£¨1£©ÏÈÓú¬xµÄ´úÊýʽ£¨12-3x£©¡Â3=4-x±íʾºáµµADµÄ³¤£¬È»ºó¸ù¾Ý¾ØÐεÄÃæ»ý¹«Ê½Áз½³Ì£¬Çó³öxµÄÖµ£®
£¨2£©Óú¬xµÄ´úÊýʽ£¨12-4x£©¡Â3=4-
x±íʾºáµµADµÄ³¤£¬È»ºó¸ù¾Ý¾ØÐÎÃæ»ý¹«Ê½µÃµ½¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¬Çó³ö¾ØÐεÄ×î´óÃæ»ýÒÔ¼°¶ÔÓ¦µÄxµÄÖµ£®
£¨3£©Óú¬xµÄ´úÊýʽ£¨a-nx£©¡Â3=
-
x±íʾºáµµADµÄ³¤£¬È»ºó¸ù¾Ý¾ØÐεÄÃæ»ý¹«Ê½µÃµ½¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¬Çó³ö¾ØÐεÄ×î´óÃæ»ýÒÔ¼°¶ÔÓ¦µÄxµÄÖµ£®
£¨2£©Óú¬xµÄ´úÊýʽ£¨12-4x£©¡Â3=4-
4 |
3 |
£¨3£©Óú¬xµÄ´úÊýʽ£¨a-nx£©¡Â3=
a |
3 |
n |
3 |
½â´ð£º½â£º£¨1£©AD=£¨12-3x£©¡Â3=4-x£¬
Áз½³Ì£ºx£¨4-x£©=3£¬
x2-4x+3=0£¬
¡àx1=1£¬x2=3£¬
´ð£ºµ±x=1»ò3Ã×ʱ£¬¾ØÐοò¼ÜABCDµÄÃæ»ýΪ3ƽ·½Ã×£»
£¨2£©AD=£¨12-4x£©¡Â3=4-
x£¬
S=x£¨4-
x£©£¬
=-
x2+4x£¬
µ±x=-
=
ʱ£¬
S×î´ó=
=3£¬
´ð£ºµ±x=
ʱ£¬¾ØÐμÜABCDµÄÃæ»ýS×î´ó£¬×î´óÃæ»ýÊÇ3ƽ·½Ã×£»
£¨3£©AD=£¨a-nx£©¡Â3=
-
x£¬
S=x£¨
-
x£©£¬
=-
x2+
x£¬
µ±x=-
=
ʱ
S×î´ó=
=
£®
´ð£ºµ±x=
ʱ£¬¾ØÐÎABCDµÄÃæ»ýS×î´ó£¬×î´óÃæ»ýÊÇ
ƽ·½Ã×£®
Áз½³Ì£ºx£¨4-x£©=3£¬
x2-4x+3=0£¬
¡àx1=1£¬x2=3£¬
´ð£ºµ±x=1»ò3Ã×ʱ£¬¾ØÐοò¼ÜABCDµÄÃæ»ýΪ3ƽ·½Ã×£»
£¨2£©AD=£¨12-4x£©¡Â3=4-
4 |
3 |
S=x£¨4-
4 |
3 |
=-
4 |
3 |
µ±x=-
4 | ||
2¡Á(-
|
3 |
2 |
S×î´ó=
0-16 | ||
4¡Á(-
|
´ð£ºµ±x=
3 |
2 |
£¨3£©AD=£¨a-nx£©¡Â3=
a |
3 |
n |
3 |
S=x£¨
a |
3 |
n |
3 |
=-
n |
3 |
a |
3 |
µ±x=-
| ||
2¡Á(-
|
a |
2n |
S×î´ó=
-
| ||
4¡Á(-
|
a2 |
12n |
´ð£ºµ±x=
a |
2n |
a2 |
12n |
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯ÊýµÄÓ¦Ó㬣¨1£©¸ù¾ÝÃæ»ý¹«Ê½Áз½³Ì£¬Çó³öxµÄÖµ£®£¨2£©¸ù¾ÝÃæ»ý¹«Ê½µÃ¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó×îÖµ£®£¨3£©¸ù¾ÝÃæ»ý¹«Ê½µÃµ½×ÖĸϵÊýµÄ¶þ´Îº¯Êý£¬È»ºóÇó³öº¯ÊýµÄ×î´óÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿