题目内容
【题目】如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变 B.增大 C.减小 D.先变大再变小
【答案】C.
【解析】
试题分析:已知BE⊥AD于E,CF⊥AD于F,可得CF∥BE,根据平行线的性质得∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,所以CF=DCcosα,BE=DBcosα,即可得BE+CF=(DB+DC)cosα=BCcosα,因∠ABC=90°,所以O<α<90°,当点D从B→D运动时,α是逐渐增大的,cosα的值是逐渐减小的,所以BE+CF=BCcosα的值是逐渐减小的.故答案选C.
练习册系列答案
相关题目
【题目】在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在表中的频数分布表中,m= ,n= .
成绩 | 频数 | 频率 |
60≤x<70 | 60 | 0.30 |
70≤x<80 | m | 0.40 |
80≤x<90 | 40 | n |
90≤x≤100 | 20 | 0.10 |
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?