题目内容

【题目】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.

【答案】
(1)

解:当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.

联立两个解析式,得:x2﹣1=x+1,

解得:x=﹣1或x=2,

当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,

∴A(﹣1,0),B(2,3)


(2)

解:方法一:

设P(x,x2﹣1).

如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).

∴PF=yF﹣yP=(x+1)﹣(x2﹣1)=﹣x2+x+2.

SABP=SPFA+SPFB= PF(xF﹣xA)+ PF(xB﹣xF)= PF(xB﹣xA)= PF

∴S△ABP= (﹣x2+x+2)=﹣ (x﹣ 2+

当x= 时,yP=x2﹣1=﹣

∴△ABP面积最大值为 ,此时点P坐标为( ,﹣

方法二:

过点P作x轴垂线,叫直线AB于F,

设P(t,t2﹣1),则F(t,t+1)

∴SABP= (FY﹣PY)(BX﹣AX),

∴SABP= (t+1﹣t2+1)(2+1),

∴SABP=﹣ t2+ t+3,

当t= 时,SABP有最大值,∴SABP=


(3)

解:方法一:

设直线AB:y=kx+1与x轴、y轴分别交于点E、F,

则E(﹣ ,0),F(0,1),OE= ,OF=1.

在Rt△EOF中,由勾股定理得:EF= =

令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.

∴C(﹣k,0),OC=k.

(i)假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,

则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.

设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=

∴EN=OE﹣ON=

∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,

∴△EQN∽△EOF,

,即:

解得:k=±

∵k>0,

∴k=

∴存在唯一一点Q,使得∠OQC=90°,此时k=

(ii)若直线AB过点C时,此时直线与圆的交点只有另一点Q点,故亦存在唯一一点Q,使得∠OQC=90°,

将C(﹣k,0)代入y=kx+1中,

可得k=1,k=﹣1(舍去),

故存在唯一一点Q,使得∠OQC=90°,此时k=1.

综上所述,k= 或1时,存在唯一一点Q,使得∠OQC=90°.

方法二:

∵y=x2+(k﹣1)x﹣k,

∴y=(x+k)(x﹣1),

当y=0时,x1=﹣k,x2=1,

∴C(﹣k,0),D(1,0),

点Q在y=kx+1上,设Q(t,kt+1),O(0,0),

∵∠OQC=90°,∴CQ⊥OQ,∴KCQ×KOQ=﹣1,

∴(k2+1)t2+3kt+1=0有唯一解,

∴△=(3k)2﹣4(k2+1)=0,

∴k1= ,k2=﹣ (k>0故舍去),∴k=


【解析】方法一:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一点是考虑直线AB是否与抛物线交于C点,此时亦存在唯一一点Q,使得∠OQC=90°.方法二:(1)联立直线与抛物线方程求出点A,B坐标.(2)利用面积公式求出P点坐标.(3)列出定点O坐标,用参数表示C,Q点坐标,利用黄金法则二求出k的值.
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网