题目内容
【题目】如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5 cm,AP=8 cm,求△APB的周长.
【答案】(1)∠APB=90°; (2)△APB的周长是24cm.
【解析】试题分析:(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;
(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.
解:(1)∵四边形ABCD是平行四边形,
∴AD∥CB,AB∥CD
∴∠DAB+∠CBA=180°,
又∵AP和BP分别平分∠DAB和∠CBA,
∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,
在△APB中,
∴∠APB=180°﹣(∠PAB+∠PBA)=90°;
(2)∵AP平分∠DAB,
∴∠DAP=∠PAB,
∵AB∥CD,
∴∠PAB=∠DPA
∴∠DAP=∠DPA
∴△ADP是等腰三角形,
∴AD=DP=5cm
同理:PC=CB=5cm
即AB=DC=DP+PC=10cm,
在Rt△APB中,AB=10cm,AP=8cm,
∴BP==6(cm)
∴△APB的周长是6+8+10=24(cm).
练习册系列答案
相关题目