搜索
题目内容
如图,□ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC长为
.
试题答案
相关练习册答案
6
试题分析:本题关键运用相似三角形的判定与性质解决问题,
∵□ABCD中,点E是AD边的中点
△AEF∽△BFC
∴AC=6
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
如图,在平面直角坐标系中,直线
=
分别与
轴,
轴相交于
两点,点
是
轴的负半轴上的一个动点,以
为圆心,3为半径作
.
(1)连结
,若
,试判断
与
轴的位置关系,并说明理由;
(2)当
为何值时,以
与直线
=
的两个交点和圆心
为顶点的三角形是正三角形?
在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并说明理由.
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
说明:方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.
纸片利用率=
×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=
,猜想EF与DE的位置关系,并说明理由.
下列说法中不正确的是( )
A.所有的等边三角形都相似
B.所有正方形都相似
C.所有的等腰直角三角形都似
D.所有的等腰梯形都相似
如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )
A、
B、2 C、3 D、4
下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )
A.6米
B.8米
C.18米
D.24米
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总