题目内容
【题目】如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为 .
【答案】 或15
【解析】解:如图1,
∵将△ABE沿AE折叠,得到△AB′E,
∴AB′=AB=5,B′E=BE,∴CE=3﹣BE,∵AD=3,∴DB′=4,∴B′C=1,∵B′E2=CE2+B′C2 ,
∴BE2=(3﹣BE)2+12 ,
∴BE= ,
如图2,
∵将△ABE沿AE折叠,得到△AB′E,
∴AB′=AB=5,
∵CD∥AB,
∴∠1=∠3,
∵∠1=∠2,
∴∠2=∠3,
∵AE垂直平分BB′,
∴AB=BF=5,
∴CF=4,
∵CF∥AB,
∴△CEF∽△ABE,
∴ ,
即 = ,
∴CE=12,∴BE=15,
综上所述:BE的长为: 或15,
所以答案是: 或15.
【考点精析】掌握矩形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目