题目内容

【题目】如图,Q为正方形ABCDCD边上一点,CQ=1,DQ=2,PBC上一点,若PQAQ,则CP=_____

【答案】

【解析】

证明△ADQ∽△QCP:已知的条件有∠C=∠D=90°,那么只要得出另外两组对应角相等即可得出两三角形相似,因为∠DQA+∠CQP=180°-90°=90°,而∠DAQ+∠DQA=90°,因此∠CQP=∠DAQ,那么就构成了两三角形相似的条件;然后由相似三角形的对应边成比例、正方形的四条边都相等及已知条件CQ=1,DQ=2求解即可.

解:∵PQ⊥AQ,
∴∠DQA+∠CQP=180°-90°=90°;
又∵四边形ABCD是正方形,
∴∠DAQ+∠DQA=90°,
∴∠CQP=∠DAQ,
∴ADQ∽△QCP,

,

∵CQ=1,DQ=2,
∴AD=DC=3;
∴CP=

故答案为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网