题目内容
【题目】已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1 , 直线CD的表达式为y2=k2x+b2 , 则k1k2= .
【答案】1
【解析】解:设点A(0,a)、B(b,0),
∴OA=a,OB=﹣b,
∵△AOB≌△COD,
∴OC=a,OD=﹣b,
∴C(a,0),D(0,b),
∴k1= = ,k2= = ,
∴k1k2=1,
故答案为:1.
根据A(0,a)、B(b,0),得到OA=a,OB=﹣b,根据全等三角形的性质得到OC=a,OD=﹣b,得到C(a,0),D(0,b),求得k1= ,k2= ,即可得到结论.本题考查了两直线相交与平行,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.
练习册系列答案
相关题目