题目内容
【题目】如图1,已知A(a,0),B (0,b)分别为两坐标轴上的点,且a,b满足a2﹣24a+|b﹣12|=﹣144,且3OC=OA.
(1)求A、B、C三点的坐标;
(2)若D(2,0),过点D的直线分别交AB、BC于E、F两点,且DF=DE,设E、F两点的横坐标分别为xE、xP,求xE+xP的值;
(3)如图2,若M(4,8),点P是x轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.
【答案】(1)A(12,0),B(0,12),C(﹣4,0);(2)4;(3)不改变,∠CGM=45°.
【解析】
(1)由偶次方和算术平方根的非负性质求出a和b的值,得出点A、B的坐标,再求出OC,即可得出点C的坐标;
(2)作EG⊥x轴于G,FH⊥x轴于H,由三角形的面积关系得出DF=DE,由AAS证明△FDH≌△EDG,得出DH=DG,即可得出结果;
(3)连接MA、MC,过C作CT⊥PM于T,证明△CMT≌△MAH,可证明△CGT是等腰直角三角形,可求得∠CGM=45°
解:(1)∵a2﹣24a+|b﹣12|=﹣144,
∴(a﹣12)2+|b﹣12|=0,
∴a﹣12=0,b﹣12=0,
∴a=b=12,
∴A(12,0),B(0,12),
∴OA=OB=12,
∵OC:OA=1:3.
∴OC=4,
∴C(﹣4,0);
(2)作EG⊥x轴于G,FH⊥x轴于H,如图1所示:
则∠FHD=∠EGD=90°,
∵BD平分△BEF的面积,
∴DF=DE,
在△FDH和△EDG中,
,
∴△FDH≌△EDG(AAS),
∴DH=DG,即﹣xE+2=xF﹣2,
∴xE+xF=4;
(3)不改变,理由如下:
如图3,连接MA、MC,过C作CT⊥PM于T,过M作MS⊥x轴于点S,
∵M(4,8),C(-4,0),A(12,0),
∴S(4,0),
∴MS垂直平分AC,
∴MC=MA,且MS=SC,
∴∠CMA=90°,
∴∠CMT+∠AMH=∠TCM+∠CMT=90°,
∴∠TCM=∠AMH,
在△CMT和△MAH中
,
∴△CMT≌△MAH(AAS),
∴TM=AH,CT=MH,
又AH=HG,
∴MT=GH,
∴GT=GM+MT=MG+GH=MH=CT,
∴△CGT是等腰直角三角形,
∴∠CGM=45°,
即当点P在点A右侧运动时,∠CGM的度数不改变.