题目内容
【题目】如图1△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD
(1)求∠EAF的度数;
(2)DE与EF相等吗?请说明理由
【答案】(1)120°;(2)DE=EF,理由见解析
【解析】
(1)由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
(2)证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
解:(1)∵△ABC是等边三角形,
∴AC=BC,∠BAC=∠B=60°,
∵∠DCF=60°,
∴∠ACF+∠ACD=∠BCD+∠ACD,
∴∠ACF=∠BCD,
在△ACF和△BCD中,
AC=BC,∠ACF=∠BCD,CF=CD,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
(2)DE=EF;理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°﹣30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,
CD=CF,∠DCF=∠FCE,CE=CE,
∴△DCE≌△FCE(SAS),
∴DE=EF;
练习册系列答案
相关题目
【题目】为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组 | 频数 | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
总计 | 100% |
(1)填空:a=____,b=____;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?