题目内容
【题目】如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .
【答案】 或
【解析】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P
∵点D的对应点D′落在∠ABC的角平分线上,
∴MD′=PD′,
设MD′=x,则PD′=BM=x,
∴AM=AB﹣BM=7﹣x,
又折叠图形可得AD=AD′=5,
∴x2+(7﹣x)2=25,解得x=3或4,
即MD′=3或4.
在Rt△END′中,设ED′=a,
①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,
∴a2=22+(4﹣a)2 ,
解得a= ,即DE= ,
②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,
∴a2=12+(3﹣a)2 ,
解得a= ,即DE= .
故答案为: 或 .
连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.
练习册系列答案
相关题目