题目内容

【题目】如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为

【答案】
【解析】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P
∵点D的对应点D′落在∠ABC的角平分线上,
∴MD′=PD′,
设MD′=x,则PD′=BM=x,
∴AM=AB﹣BM=7﹣x,
又折叠图形可得AD=AD′=5,
∴x2+(7﹣x)2=25,解得x=3或4,
即MD′=3或4.
在Rt△END′中,设ED′=a,
①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,
∴a2=22+(4﹣a)2
解得a= ,即DE=
②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,
∴a2=12+(3﹣a)2
解得a= ,即DE=
故答案为:
连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网