题目内容
【题目】如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.
(1)求证:;
(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;
(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)先判断出,再由四边形是正方形,得出,,即可得出结论;
(2)过点作于,设,先求出,进而得出,再求出,,再判断出,进而判断出,即可得出结论;
(3)先求出,再求出,再判断出,求出,再用勾股定理求出,最后判断出,得出,即可得出结论.
(1)证明:∵,
∴,
∴,
∵四边形是正方形,
∴,
∴,
∴,
∴;
(2)证明:如图2,过点作于,
设,
∵点是的中点,
∴,
∴,
在中,根据面积相等,得,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(3)解:如图3,过点作于,
,
∴,
在中, ,
∴,
∵,
∴,
∴,
∴,
∴,
在中,,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴
练习册系列答案
相关题目