题目内容
【题目】如图,抛物线y=ax2+bx+4 经过点A(﹣3,0),点 B 在抛物线上,CB∥x轴,且AB 平分∠CAO.则此抛物线的解析式是___________.
【答案】y=-x2+x+4
【解析】
先计算出AC=5,再证明CB=CA=5,则B(5,4),然后利用待定系数法求抛物线解析式.
解:∵抛物线y=ax2+bx+4与y轴交于点C,
∴C(0,4),
∴OC=4,
∵A(-3,0),
∴OA=3,
∴AC=5,
∵AB平分∠CAO,
∴∠BAC=∠BAO,
∵BC∥x轴,
∴∠CBA=∠BAO,
∴∠BAC=∠CBA,
∴CB=CA=5,
∴B(5,4).
把A(-3,0)、B(5,4)代入y=ax2+bx+4,
得,解得,
∴抛物线解析式为y=-x2+x+4.
故答案为y=-x2+x+4.
练习册系列答案
相关题目
【题目】在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
国学知识 | 现场写作 | 经典诵读 | |
甲 | 86 | 70 | 90 |
乙 | 86 | 80 | 90 |
丙 | 86 | 85 | 90 |
(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.