题目内容

如图,P是正方形ABCD边BC上的一点,且BP=3PC,Q是CD中点.
(1)求证:△ADQ∽△QCP.
(2)试问:AQ与PQ有什么关系(位置与数量)?

(1)证明:∵四边形ABCD是正方形,
∴AD=CD,∠C=∠D=90°;
又∵Q是CD中点,
∴CQ=DQ=AD;
∵BP=3PC,
∴CP=AD,
==
又∵∠C=∠D=90°,
∴△ADQ∽△QCP;

(2)AQ=2PQ,且AQ⊥PQ.理由如下:
由(1)知,△ADQ∽△QCP,==
===
AQ=2PQ;
∵△ADQ∽△QCP,
∴∠AQD=∠QPC,∠DAQ=∠PQC,
∴∠PQC+∠DQA=DAQ+AQD=90°,
∴AQ⊥QP.
分析:(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;
(2)AQ=2PQ,且AQ⊥PQ.根据相似三角形的对应边成比例即可求得AQ与PQ的数量关系;根据相似三角形的对应角相等即可证得AQ与PQ的位置关系.
点评:本题考查了相似三角形的判定与性质.相似三角形的对应边成比例、对应角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网