题目内容

【题目】如图,在平面直角坐标系中,抛物线y=x2+mxx轴的负半轴于点A.点By轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____

【答案】3

【解析】解方程x2+mx=0A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.

y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),

∵点A关于点B的对称点为A′,点A′的横坐标为1,

∴点A的坐标为(﹣1,0),

∴抛物线解析式为y=x2+x,

x=1时,y=x2+x=2,则A′(1,2),

y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),

A′C的长为1﹣(﹣2)=3,

故答案为:3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网