题目内容
【题目】如图,△ABC是等边三角形,CD⊥AB于点D,∠AEB=90°,CD=AE.
求证:(1)△BCD≌△BAE;(2)△EBD是等边三角形.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据HL即可证明△BCD≌△BAE;
(2)根据等腰三角形的性质得到D为AB中点,再利用直角三角形斜边上的中线等于斜边的一半得到DE=BD,再根据等边三角形的判定定理即可求解.
证明:(1)∵△ABC是等边三角形
∴AB=BC
∵CD⊥AB,∠AEB=90°
∴∠CDB=∠AEB=90°
在Rt△BCD和Rt△BAE中,
∴△BCD≌△BAE
(2)∵△ABC是等边三角形,CD⊥AB
∴D为AB中点
∴ED=AB=DB
∵△BCD≌△BAE
∴∠EBD=∠DBC=60°
∴△EBD是等边三角形
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)