题目内容

【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=
(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.

【答案】
(1)解:如图所示:


(2)解:如图,作BH⊥OA,垂足为H,

在Rt△OHB中,∵BO=10,sin∠BOA=

∴BH=6,

∴OH=8,∴点B的坐标为(8,6),

∵OA=20,OH=8,∴AH=12,

在Rt△AHB中,∵BH=6,

∴AB= =6

∴cos∠BAO=


(3)解:①当BO=AB时,∵AO=20,∴OH=10,

∴点B沿x轴正半轴方向平移2个单位,

②当AO=AB′时,∵AO=20,∴AB′=20,

过B′作B′N⊥x轴,

∵点B的坐标为(8,6),

∴B′N=6,∴AN= =2

∴点B沿x轴正半轴方向平移(2 +12)个单位,

③当AO=OB″时,

∵AO=20,

∴OB″=20,

过B″作B″P⊥x轴.

∵B的坐标为(8,6),

∴B″P=6,

∴OP= =2

∴点B沿x轴正半轴方向平移(2 ﹣8)个单位,

综上所述当点B沿x轴正半轴方向平移2个单位、(2 +12)个单位,或(2 ﹣8)个单位时,△ABO为等腰三角形


【解析】(1)作OB,AB的垂直平分线交于一点M,以点M为圆心,MA为半径画圆,则圆M即为所求;(2)如图,作BH⊥OA,垂足为H,在Rt△OHB中,由BO=10,sin∠BOA= ,得到BH=6,OH=8,求出点B的坐标为(8,6),根据OA=20,OH=8,求出AH=12,在Rt△AHB中,由BH=6,得到AB= =6 ,求出cos∠BAO= ;(3)①当BO=AB时,由AO=20,得到OH=10,点B沿x轴正半轴方向平移2个单位;②当AO=AB′时,由AO=20,得到AB′=20,过B′作B′N⊥x轴,由点B的坐标为(8,6),得到B′N=6,AN= =2 .求得点B沿x轴正半轴方向平移(2 +12)个单位,③当AO=OB″时,由AO=20,得到OB″=20,过B″作B″P⊥x轴.由B的坐标为(8,6),得到B″P=6,OP= =2 ,点B沿x轴正半轴方向平移(2 ﹣8)个单位.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网