题目内容
【题目】如图,已知△ABC为等边三角形,点D,E分别在边AB、AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
在如图中,线段PM与PN的数量关系是______,∠MPN的度数是______;
(2)探究证明
把△ADE绕点A逆时针方向旋转到如图的位置,
①判断△PMN的形状,并说明理由;
②求∠MPN的度数;
(3)拓展延伸
若△ABC为直角三角形,∠BAC=90°,AB=AC=12,点DE分别在边AB,AC上,AD=AE=4,连接DC,点M,P,N分别为DE,DC,BC的中点.把△ADE绕点A在平面内自由旋转,如图.
①△PMN的是______三角形.
②直接利用①中的结论,求△PMN面积的最大值.
【答案】(1)PM=PN,120°.(2)①△PMN是等腰三角形.证明见解析;②120°.(3)①等腰直角;②32.
【解析】
(1)结论:PM=PN,120°.利用三角形的中位线定理即可解决问题;
(2)①如图2中,连接BD、EC.证明△BAD≌△CAE(SAS),可得BD=EC,再利用三角形中位线定理即可解决问题;
②利用三角形的外角以及平行线的性质即可解决问题;
(3)①由(2)可知:△PMN是等腰直角三角形;
②因为PM=PN=BD,推出BD最大时,PM最大,△PMN面积最大.
(1)结论:PM=PN,120°.
理由:如图1中,∵△ABC是等边三角形,
∴AB=AC,
∵AD=AE,
∴BD=EC,
∵点M,P,N分别为DE,DC,BC的中点,
∴PM=EC,PN=BD,PM∥AC,PN∥AB,
∴PM=PN,∠MPD=∠ACD,∠PNC=∠B=60°,
∵∠MPN=∠MPD+∠DPN=∠ACD+∠DCB+∠PNC=120°,
故答案为PM=PN,120°;
(2)如图2中,连接BD、EC,
①∵∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∵BA=CA,DA=EA,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵点M,P,N分别为DE,DC,BC的中点,
∴PN∥BD,PM∥EC,PN=BD,PM=CE,
∴PN=PM,
∴△PMN是等腰三角形;
②∵PN∥BD,PM∥EC,
∴∠PNC=∠DBC,∠DPM=∠A=ECD,
∴∠MPN=∠MPD+∠DPN=∠ECD+∠PNC+∠DCB=∠ECD+∠DCB+∠DBC=∠ACE+∠ACD+∠DCB+∠DBC=∠ABD+∠ACB+∠DBC=∠ACB+∠ABC=120°;
(3)①△PMN是等腰直角三角形;
②∵PM=PN=BD,
∴BD最大时,PM最大,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=16,∴PM=8,∴S△PMN最大=PM2=×82=32.
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.