题目内容
【题目】如图,在ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
【答案】证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE= AD,CF=BF= BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,
∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中, ,
∴△AEG≌△CFH(ASA),
∴AG=CH.
【解析】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.
练习册系列答案
相关题目
【题目】东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p= 且其日销售量y(kg)与时间t(天)的关系如表:
时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.