题目内容
【题目】能将三角形面积平分的是三角形的_______(填中线或角平分线或高线)
【答案】中线
【解析】根据等底等高可得,能将三角形面积平分成相等两部分的是三角形的中线。
故答案为:中线.
【题目】下列各式由左边到右边的变形中,是分解因式的为( )
A. a(x+y)=ax+ay B. x2-4x+4=x(x-4)+4
C. 10x2-5x=5x(2x-1) D. x2-16+3x=(x-4)(x+4)+3x
【题目】已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PB、PA.
(Ⅰ)如图①,把△ABP绕点A逆时针旋转到△ACQ,求证:点P、C、Q三点在同一直线上.
(Ⅱ)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(Ⅲ)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.
【题目】如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
【题目】将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是 .
【题目】等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边长是___.
【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形 B.菱形
C.对角线互相垂直的四边形 D.对角线相等的四边形
【题目】为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)
【题目】如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为( )
A.4 B.5 C.6 D.7