题目内容
【题目】计算(x+3)(x﹣3)正确的是( )
A. x2+9 B. 2x C. x2﹣9 D. x2﹣6
【答案】C
【解析】(x+3)(x﹣3)=x2-9.
故选C.
【题目】分解因式a4﹣2a2+1的结果是( )
A. (a2+1)2 B. (a2﹣1)2 C. a2(a2﹣2) D. (a+1)2(a﹣1)2
【题目】某服装原价为200元,连续两次涨价a%后,售价为242元,则a的值为( )
A. 10 B. 9 C. 5 D. 12
【题目】已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A.21B.20C.19D.18
【题目】若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为( )
A. 2017 B. 2018 C. 2019 D. 0
【题目】如图,已知点O为两内角平分线交点,∠A= 80°,则∠BOC=_______ 。
【题目】某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请补全条形统计图;
(2)求出图1中表示文学类书籍的扇形圆心角度数;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
【题目】问题背景
已知在△ABC中,AB边上的动点D由A向B运动(与A、B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.
(1)初步尝试
如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.
小王同学发现可以由以下两种思路解决问题:
思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;
思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);
(2)类比探究
如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值;
(3)延伸拓展
如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).
【题目】如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)