题目内容
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
【答案】C
【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,先求证△AFD′≌△CFB,得BF=D′F,设D′F=BF=x,则在Rt△AFD′中,根据勾股定理列方程求出x即可得到结果.
解:由四边形ABCD为矩形以及折叠可得,AD′=AD=BC,∠D=∠D′=∠B,
又∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=BF=x,则AF=8﹣x,
在Rt△AFD′中,(8﹣x)2=x2+42,
解得:x=3,
∴AF=8-x=8﹣3=5,
∴S△AFC=AFBC=10.
故选:C.
练习册系列答案
相关题目
【题目】为了进一步了解七年级800名学生的身体素质情况,体育老师抽取七年级男女各25位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 |
|
第4组 | 140≤x<160 | 16 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的,跳绳次数低于140次的有人,则
(2)请把频数分布直方图补充完整;
(3)若七年级学生一分钟跳绳次数(x)达标要求是:x≥120.请估算七年级学生达标人数.