题目内容

如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.

(1)求m的值;
(2)求点B的坐标;

(1)3;(2)B(-1,0).

解析试题分析:(1)由二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),利用待定系数法将点A的坐标代入函数解析式即可求得m的值;
(2)根据(1)求得二次函数的解析式,然后将y=0代入函数解析式,即可求得点B的坐标.
试题解析:(1)∵二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),
∴-9+2×3+m=0,
解得:m=3;
(2)∵二次函数的解析式为:y=-x2+2x+3,
∴当y=0时,-x2+2x+3=0,
解得:x=3或x=-1,
∴B(-1,0).
考点: 二次函数综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网