题目内容
已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S.
(1)如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连接DT、DS.
①试判断线段DT、DS的数量关系和位置关系;
②求AS+AT的值;
(2)如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连接DT、DS.求AS-AT的值;
(3)如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连接ET、ES.根据(1)、(2)计算,通过观察、分析,对线段
AS、AT的数量关系提出问题并解答.
(1)如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连接DT、DS.
①试判断线段DT、DS的数量关系和位置关系;
②求AS+AT的值;
(2)如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连接DT、DS.求AS-AT的值;
(3)如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连接ET、ES.根据(1)、(2)计算,通过观察、分析,对线段
AS、AT的数量关系提出问题并解答.
(1)①线段DT、DS的数量和位置关系分别是:DT=DS,DT⊥DS.理由如下:
∵AC为正方形ABCD的对角线,
∴∠TAD=45°,
∵TS为直径,
∴∠SDT=90°,
又∵∠TSD=∠TAD,
∴∠TSD=45°,
∴△DST为等腰直角三角形,
∴DT=DS,DT⊥DS;
②∵∠SDT=∠ADC=90°,
∴∠SDA=∠CDT,
又∵TS为直径,
∴∠SAT=90°,
∴∠SAD=45°,
∴∠SAD=∠DCT,
而DA=DC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS+AT=AC,
而正方形ABCD的边长为4,
∴AC=4
,
∴AS+AT=4
;
(2)∵TS为直径,
∴∠SAT=90°,∠SDT=90°,
∴∠SAC=90°,
而∠CAD=45°,
∴∠SAD=45°,
∴∠STD=45°,
∴△DST为等腰直角三角形,
∴DS=DT,
又∵∠SAD=∠DCT=45°,∠ASD=∠DTC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS-AT=TC-AT=AC=4
;
(3)提出的问题是:求AT-AS的值.解答如下:
在TA上截取TF=AS,连接EF,如图,
∵∠TAE=∠BAC=45°,
∴△EST为等腰直角三角形,
∴SE=TE,
又∵∠ASE=∠ETF,
在△EAS和△EFT中,
∴△EAS≌△EFT(SAS),
∴∠SEA=∠TEF,AE=EF,
而∠TES=90°,
∴∠AEF=90°,
∴△AEF为等腰直角三角形,
∴AF=
AE,
∵AE=AD=4,
∴AT-AS=AT-TF=AF=4
.
∵AC为正方形ABCD的对角线,
∴∠TAD=45°,
∵TS为直径,
∴∠SDT=90°,
又∵∠TSD=∠TAD,
∴∠TSD=45°,
∴△DST为等腰直角三角形,
∴DT=DS,DT⊥DS;
②∵∠SDT=∠ADC=90°,
∴∠SDA=∠CDT,
又∵TS为直径,
∴∠SAT=90°,
∴∠SAD=45°,
∴∠SAD=∠DCT,
而DA=DC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS+AT=AC,
而正方形ABCD的边长为4,
∴AC=4
2 |
∴AS+AT=4
2 |
(2)∵TS为直径,
∴∠SAT=90°,∠SDT=90°,
∴∠SAC=90°,
而∠CAD=45°,
∴∠SAD=45°,
∴∠STD=45°,
∴△DST为等腰直角三角形,
∴DS=DT,
又∵∠SAD=∠DCT=45°,∠ASD=∠DTC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS-AT=TC-AT=AC=4
2 |
(3)提出的问题是:求AT-AS的值.解答如下:
在TA上截取TF=AS,连接EF,如图,
∵∠TAE=∠BAC=45°,
∴△EST为等腰直角三角形,
∴SE=TE,
又∵∠ASE=∠ETF,
在△EAS和△EFT中,
|
∴△EAS≌△EFT(SAS),
∴∠SEA=∠TEF,AE=EF,
而∠TES=90°,
∴∠AEF=90°,
∴△AEF为等腰直角三角形,
∴AF=
2 |
∵AE=AD=4,
∴AT-AS=AT-TF=AF=4
2 |
练习册系列答案
相关题目