题目内容
【题目】如图,△ABC的顶点A,C落在坐标轴上,且顶点B的坐标为(﹣5,2),将△ABC沿x轴向右平移得到△A1B1C1 , 使得点B1恰好落在函数y= 上,若线段AC扫过的面积为48,则点C1的坐标为( )
A.(3,2)
B.(5,6)
C.(8,6)
D.(6,6)
【答案】C
【解析】解:B1的纵坐标是2,把y=2代入y= 得x= =3, 则B1的坐标是(3,2),则平移的距离是3﹣(﹣5)=8(单位长度).
则AA1=8.
则C1的纵坐标是 =6,
则C1的坐标是(8,6).
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.
【题目】如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是( )
A. 当∠C=时,AB∥CD B. 当∠A=时,AC∥DE
C. 当∠E=时,CD∥EF D. 当∠BOC=时,BF∥DE
【题目】下表是小红在某个路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得7:50~8:00时段内的电瓶车车辆数与8:00~8:10时段内的货车车辆数之比是7∶2.
电瓶车 | 公交车 | 货车 | 小轿车 | 合计 | |
7:50~8:00 | 5 | 63 | 133 | ||
8:00~8:10 | 5 | 45 | 82 | ||
合计 | 67 | 30 | 108 |
(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;
(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;
(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车?