题目内容
【题目】如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?
【答案】这个人从B点到M点运动了6s.
【解析】
根据∠CMD=90°,利用互余关系可以得出:∠ACM=∠DMB,证明三角形全等的另外两个条件容易看出.利用全等的性质可求得AC=BM=3,从而求得运动时间.
∵∠CMD=90°,
∴∠CMA+∠DMB=90°,
又∵∠CAM=90°,
∴∠CMA+∠ACM=90°,
∴∠ACM=∠DMB,
在△ACM和△BMD中,
,
∴△ACM≌△BMD(AAS),
∴AC=BM=3m,
∴他到达点M时,运动时间为3÷0.5=6(s),
答:这个人从B点到M点运动了6s.
练习册系列答案
相关题目