题目内容
【题目】已知点P是Rt△ABC斜边AB所在直线上的一个不与A、B重合的动点,分别过A、B向直线CP作垂线,垂足分别为E、F,点Q为斜边AB的中点
(1)当点P与点Q重合时,AE与BF的位置关系是 ,QE与QF的数量关系是 ,并说明理由;
(2)当点P不与点Q重合时,判断QE与QF的数量关系并给予证明.
【答案】(1)AE∥BF, QE=QF,理由见解析;(2)①当点P在线段AB上不与点Q重合时,QE=QF,证明见解析;②当点P在线段BA(或AB)的延长线上时,结论QE=QF成立,证明见解析.
【解析】
(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;
(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.
解:(1)如图1,
当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是QE=QF,
理由是:∵Q为AB的中点,∴AQ=BQ,
∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,
∴△AEQ≌△BFQ(AAS),
∴QE=QF,
故答案为:AE∥BF,QE=QF;
(2)①当点P在线段AB上不与点Q重合时,QE=QF,
证明:延长EQ交BF于D,如图2,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,又∠AQE=∠BQD,AQ=BQ,
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF;
②当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,
证明:延长EQ交FB于D,如图3,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
又,∠AQE=∠BQD,AQ=BQ,
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF.