题目内容

【题目】如图①,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

(1)请直接写出线段AF,AE的数量关系;

(2)①将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;

②若AB=2,CE=2,在图②的基础上将△CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.

【答案】(1)AF= (2)结论:AF= (3)4或2

【解析】试题(1)如图①中,只要证明△AEF是等腰直角三角形即可得到结论AF=AE;

(2)如图②中,连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰三角形即可;

(3)如图③中,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.

试题解析:(1)AF=

如图2,结论:AF=

理由:连接EF,DF交BC于K,

∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°

∴∠EKF=180°=∠DKE=135°,

∵∠ADE=180°-∠EDC=180°-45°=135°,∴∠EKF=∠ADE,

∵∠DKG=∠C,∴DK=DC,

∵DF=AB=AC,∴KF=AD,

在△EKF和△EDA中,

∴△EKF≌△EDA

∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,

AF=AE

(3)4或2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网