题目内容
【题目】有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是( )
A.
B.
C.
D.1
【答案】C
【解析】解:函数y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣ (x<0),是y随x的增大而增大,
所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是 .
故选C.
利用正比例函数、二次函数以及反比例函数的性质可判断函数y=2x,y=x2﹣3(x>0),y=﹣ (x<0),是y随x的增大而增大,然后根据概率公式可求出取出的卡片上的函数是y随x的增大而增大的概率.
练习册系列答案
相关题目
【题目】在某地,人们发现某种蟋蟀1min,所叫次数x与当地温度T之间的关系或为T=ax+b,下面是蟋蟀所叫次数与温度变化情况对照表:
蟋蟀叫的次数(x) | … | 84 | 98 | 119 | … |
温度(℃)T | … | 15 | 17 | 20 | … |
①根据表中的数据确定a、b的值.
②如果蟋蟀1min叫63次,那么该地当时的温度约为多少摄氏度?