题目内容

【题目】已知抛物线y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)与x轴分别交于A(x1 , 0)、
B(x2 , 0)两点,直线y2=2x+t经过点A.

(1)已知A、B两点的横坐标分别为3、﹣1.
①当a=1时,直接写出抛物线y1和直线y2相应的函数表达式;
②如图,已知抛物线y1在3<x<4这一段位于直线y2的下方,在5<x<6这一段位于直线y2的上方,求a的取值范围;
(2)若函数y=y1+y2的图象与x轴仅有一个公共点,探求x2﹣x1与a之间的数量关系.

【答案】
(1)解:①∵已知抛物线y1=a(x﹣x1)(x﹣x2)经过A(x1,0)、B(x2,0)两点,当a=1,

∴y1=(x﹣3)(x+1),

∵直线y2=2x+t经过点A,

∴0=2×3+t,

解得:t=﹣6,

∴y2=2x﹣6;

②设y1=a(x﹣3)(x+1),

由题意可得,当x=4时,y1=5a<2,

∴a<

当x=5时,y1=12a>4,

∴a>

a<


(2)解:∵直线y2过点A(x1,0),

∴0=2x1+t,∴t=﹣2x1

∴y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2]

∴方程的根为x1,x2

∵函数y的图象与x轴仅有一个公共点,

∴x1=x2

∴x2﹣x1=


【解析】
(1)①根据已知条件得出当a=1时,得到y1=(x﹣3)(x+1),由于直线y2=2x+t经过点A,得到方程0=2×3+t,得到t=﹣6,

于是得到结论;②设y1=a(x﹣3)(x+1),根据题意得出不等式即可得出结论;(2)根据已知条件得到y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2],根据函y的图像与x轴仅有一个公共点,于是得到结论。

【考点精析】通过灵活运用确定一次函数的表达式和抛物线与坐标轴的交点,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网