题目内容

【题目】如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.

(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.

【答案】
(1)解:如图,连接OC,

∵PD⊥AB,

∴∠ADE=90°,

∵∠ECP=∠AED,

又∵∠EAD=∠ACO,

∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,

∴PC⊥OC,

∴PC是⊙O切线


(2)解:解法一:

延长PO交圆于G点,

∵PF×PG=PC2,PC=3,PF=1,

∴PG=9,

∴FG=9﹣1=8,

∴AB=FG=8.

解法二:

设⊙O的半径为x,则OC=x,OP=1+x

∵PC=3,且OC⊥PC

∴32+x2=(1+x)2

解得x=4

∴AB=2x=8


【解析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网