题目内容
【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO,连结CD
(1)求证:CD是⊙O的切线;
(2)若AB=2,CD= ,求AD的长.(结果保留根号)
【答案】
(1)证明:连接OD,
∵AD∥OC,
∴∠1=∠3,∠2=∠4
∵OA=OD
∴∠3=∠4
∴∠1=∠2,
在△OCB与△OCD中.
∴△OCB≌△OCD.(SAS).
∴∠ODC=∠OBC.
∵BC是⊙O的切线
∴∠OBC=90°.
∴∠ODC=90°.
∴OD⊥CD.
∴CD切⊙O于D;
(2)解:由(1)知:CD、BC是⊙O的切线,
∴BC=CD= ,
在Rt△OCB中,
∵OB= AB=1,
∴OC= ,
由(1)知:∠2=∠4,
∵AB是直径,
∴∠ADB=90°.
∴∠ADB=∠ABC=90°.
∴△OCB∽△ABD,
∴
即 ,
∴ ;
【解析】(1)连接OD,SAS证明△ODC≌△OBC,得出∠CDO=∠CBO=90°,即可得出CD是⊙O的切线;(2)先求出OB,OC的长,再运用△ADB∽△OBC,求出AD的长.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目