题目内容
【题目】如图,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有( )
A. 4 B. 3 C. 2 D. 1
【答案】D
【解析】①∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD+∠ADC=180°,
∵AE平分∠BAD,
∴∠EAD=∠BAE=∠BAD,
∵DE⊥AE,
∴∠AED=90°,
∴∠EAD+∠ADE=90°,
∴∠BAE+∠CDE=90°,
∴∠ADE=∠CDE,
∴DE平分∠ADC,故①正确;
②∵四边形ABCD是平行四边形,
∴AD∥BC,AB=AC
∴∠DAE=∠AEB,
∵∠EAD=∠BAE,
∴∠BAE=∠BEA,
∴AB=EB,
同理EC=DC,
∴EB=EC,
∴E是BC的中点,故②正确;
③∵四边形ABCD是平行四边形,
∴AD=BC,
∵BE=EC,
∴AD=2CD,故③正确;
④∵四边形ABCD是平行四边形
∴=,
∴,
∵EB=EC,
∴,
∴梯形ADCE的面积与△ABE的面积比是3:1,故④正确,
故选:D.
练习册系列答案
相关题目