题目内容

几何证明
(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=
12
(AB+BC+AC).
(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.
分析:(1)利用全等三角形的判定定理ASA证得△ABF≌△MBF,然后由全等三角形的对应边相等进一步推出MB=AB,AF=MF,同理CN=AC,AG=NG,由此可以证明FG为△AMN的中位线,然后利用中位线定理求得FG=
1
2
(AB+BC+AC);
(2)延长AF、AG,与直线BC相交于M、N,与(1)类似可以证出答案.
解答:解:(1)如图1,∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
在△ABF和△MBF中,
∠AFB=∠MFB 
 BF=BF 
  ∠ABF=∠MBF     

∴△ABF≌△MBF(ASA)
∴MB=AB
∴AF=MF,
同理:CN=AC,AG=NG,
∴FG是△AMN的中位线
∴FG=
1
2
MN,
=
1
2
(MB+BC+CN),
=
1
2
(AB+BC+AC).

(2)图2中,FG=
1
2
(AB+AC-BC)
理由如下:如图2,
延长AG、AF,与直线BC相交于M、N,
∵由(1)中证明过程类似证△ABF≌△NBF,
∴NB=AB,AF=NF,
同理CM=AC,AG=MG
∴FG=
1
2
MN,
∴MN=2FG,
∴BC=BN+CM-MN=AB+AC-2FG,
∴FG=
1
2
(AB+AC-BC),
答:线段FG与△ABC三边的数量关系是FG=
1
2
(AB+AC-BC).
点评:本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网