题目内容
【题目】将长方形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图2);再展平纸片(如图3),则图3中∠α的大小为()
A.30°B.25.5°C.20°D.22.5°
【答案】D
【解析】
利用折叠的性质,可得∠AEB=45°,∠BEG=DEG,四边形ABFE是正方形,又由平角的定义即可求得∠DEG的度数,继而求得∠α的值.
解:根据题意得:如图③:四边形ABFE是正方形,
∴∠AEB=∠FEB=45°,
∵EG是折痕,∴∠BEG=DEG,
∵∠AEB=45°,∠AEB+∠BEG+∠DEG=180°,
∴∠DEG=67.5°,
∴∠α=90°-∠DEG=22.5°.
故选:D.
练习册系列答案
相关题目