题目内容
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是( )
A.8
B.10
C.20
D.32
【答案】B
【解析】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2, 矩形的面积是32,
∵AB∥CD,
∴∠ACD=∠CAB,
∵△ACD′由△ACD翻折而成,
∴∠ACD=∠ACD′,
∴∠ACD′=∠CAB,
∴AF=CF,
∵BF=AB﹣AF=8﹣AF,
∴CF2=BF2+BC2
∴AF2=(8﹣AF)2+42
∴AF=5,BF=3
∴S△AFC=S△ABC﹣S△BFC=10.
故选B.
解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
练习册系列答案
相关题目