题目内容
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2 ;
(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标 .
【答案】(1)图略
(2)旋转中心为(1.5,-1)
(3)P(-2,0)
【解析】(1)延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,利用点A的对应点A2的坐标为(0,-4),得出图象平移单位,即可得出△A2B2C2;
(2)根据△△A1B1C绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;
(3)根据B点关于x轴对称点为A2,连接AA2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.
解:(1)△A1B1C如图所示,
△A2B2C2如图所示;
(2)如图,旋转中心坐标为(1.5,3);
(3)如图所示,点P的坐标为(﹣2,0).
“点睛”此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.
练习册系列答案
相关题目