题目内容
【题目】某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.
(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);
(2)求小明到达点F时的影长FH的长.
【答案】(1)(3分+2分)画图见解析;(2)FH的长为1.5米.
【解析】
试题本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.
(1)连结MA、GC并延长MA和GC,它们相交于点O,然后连结OE并延长交MN于H,则FH为小明位于点F时在这个灯光下的影长;
(2)先利用速度公式得到BM=BD=3m,DF=4.5m,设AB=CD=EF=a,作OK⊥MN于K,如图,通过证明△MAB∽△MOK得到=①,通过证明△GCD∽△GOK得到=②,由①②得=,可求出Dk=2,原式得到=,FK=DF-DK=2.5,然后证明△HEF∽△HOK,利用相似比可计算出HF.
试题解析:解:(1)如图,点O和FH为所作;
(2)BM=BD=2×1.5=3m,GD=1.2m,DF=1.5×1.5×2=4.5m,设AB=CD=EF=a,
作OK⊥MN于K,如图,
∵AB∥OK,
∴△MAB∽△MOK,
∴=,即=①,
∵CD∥OK,
∴△GCD∽△GOK,
∴CDOK=GDGK,即=②,
由①②得=,解得Dk=2,
∴==,FK=DF-DK=4.5-2=2.5,
∵EF∥OK,
∴△HEF∽△HOK,
∴=,即=,
∴HF=1.5(m).
答:小明到达点F时的影长FH的长为1.5m.