题目内容
【题目】如图1,直线l:y=mx+10m与x轴负半轴、y轴正半轴分别交于A、B两点.
(1)当OA=OB时,试确定直线l的函数表达式;
(2)在(1)的条件下,如图2,设Q为直线AB上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图3.问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.
【答案】(1)y=x+10.(2)14;(3)PB的长为定值.理由见解析.
【解析】
试题(1)令y=0可求得x=﹣10,从而可求得点A的坐标,令x=0得y=10m,由OA=OB可知点B的纵坐标为10,从而可求得m的值;
(2)依据AAS证明△AMO≌△ONB,由全等三角形的性质可知ON=AM,OM=BN,最后由MN=AM+BN可求得MN的长;
(3)过点E作EG⊥y轴于G点,先证明△ABO≌△EGB,从而得到BG=10,然后证明△BFP≌△GEP,从而得到BP=GP=BG.
解:(1)由题意知:A(﹣10,0),B(0,10m)
∵OA=OB,
∴10m=10,即m=1.
∴L的解析式y=x+10.
(2)∵AM⊥OQ,BN⊥OQ
∴∠AMO=∠BNO=90°
∴∠AOM+∠MAO=90°
∵∠AOM+BON=90°
∴∠MAO=∠NOB
在△AMO和△ONB中,
,
∴△AMO≌△ONB.
∴ON=AM,OM=BN.
∵AM=8,BN=6,
∴MN=AM+BN=14.
(3)PB的长为定值.
理由:如图所示:过点E作EG⊥y轴于G点.
∵△AEB为等腰直角三角形,
∴AB=EB,∠ABO+∠EBG=90°.
∵EG⊥BG,
∴∠GEB+∠EBG=90°.
∴∠ABO=∠GEB.
在△ABO和△EGB中,
,
∴△ABO≌△EGB.
∴BG=AO=10,OB=EG
∵△OBF为等腰直角三角形,
∴OB=BF
∴BF=EG.
在△BFP和△GEP中,
,
∴△BFP≌△GEP.
∴BP=GP=BG=5.
【题目】某中学在安全工作月中,进行了“防自然灾害﹣地震知识知多少”专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,花粉等级后的数据整理如下表:
等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
频数 | 40 | 120 | n | 4 |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m的值为 , n的值为;
(2)根据表中的数据,请你计算“非常了解”的频率在如图中对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若校一共有2400名学生,请根据调查结果估计全校学生中“比较了解”的人数为多少?